skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akshima"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We revisit the problem of finding B-block-long collisions in Merkle-Damg˚ard Hash Functions in the auxiliary-input random oracle model, in which an attacker gets a piece of S-bit advice about the random oracle and makes T oracle queries. Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for 2 ≤ B ≤ T (with respect to a random salt). The attack achieves advantage Ω( e ST B/2 n + T 2/2 n) where n is the output length of the random oracle. They conjectured that this attack is optimal. However, this so-called STB conjecture was only proved for B ≈ T and B = 2. Very recently, Ghoshal and Komargodski (CRYPTO 22) confirmed STB conjecture for all constant values of B, and provided an Oe(S 4T B2/2 n + T 2/2 n) bound for all choices of B. In this work, we prove an Oe((ST B/2 n)· max{1, ST2/2 n}+T 2/2 n) bound for every 2 < B < T. Our bound confirms the STB conjecture for ST2 ≤ 2 n, and is optimal up to a factor of S for ST2 > 2 n (note as T 2 is always at most 2n, otherwise finding a collision is trivial by the birthday attack). Our result subsumes all previous upper bounds for all ranges of parameters except for B = Oe(1) and ST2 > 2 n. We obtain our results by adopting and refining the technique of Chung, Guo, Liu, and Qian (FOCS 2020). Our approach yields more modular proofs and sheds light on how to bypass the limitations of prior techniques. Along the way, we obtain a considerably simpler and illuminating proof for B = 2, recovering the main result of Akshima, Cash, Drucker and Wee. 
    more » « less
  2. null (Ed.)
    We study collision-finding against Merkle-Damgård hashing in the random-oracle model by adversaries with an arbitrary S-bit auxiliary advice input about the random oracle and T queries. Recent work showed that such adversaries can find collisions (with respect to a random IV) with advantage 𝛺(𝑆𝑇2/2𝑛) , where n is the output length, beating the birthday bound by a factor of S. These attacks were shown to be optimal. We observe that the collisions produced are very long, on the order of T blocks, which would limit their practical relevance. We prove several results related to improving these attacks to find shorter collisions. We first exhibit a simple attack for finding B-block-long collisions achieving advantage 𝛺̃ (𝑆𝑇𝐵/2𝑛) . We then study if this attack is optimal. We show that the prior technique based on the bit-fixing model (used for the 𝑆𝑇2/2𝑛 bound) provably cannot reach this bound, and towards a general result we prove there are qualitative jumps in the optimal attacks for finding length 1, length 2, and unbounded-length collisions. Namely, the optimal attacks achieve (up to logarithmic factors) on the order of (𝑆+𝑇)/2𝑛 , 𝑆𝑇/2𝑛 and 𝑆𝑇2/2𝑛 advantage. We also give an upper bound on the advantage of a restricted class of short-collision finding attacks via a new analysis on the growth of trees in random functional graphs that may be of independent interest. 
    more » « less
  3. null (Ed.)
    In the past few years, we have seen multiple attacks on one-dimensional databases that support range queries. These attacks achieve full database reconstruction by exploiting access pattern leakage along with known query distribution or search pattern leakage. We are the first to go beyond one dimension, exploring this threat in two dimensions. We unveil an intrinsic limitation of reconstruction attacks by showing that there can be an exponential number of distinct databases that produce equivalent leakage. Next, we present a full database reconstruction attack. Our algorithm runs in polynomial time and returns a poly-size encoding of all databases consistent with the given leakage profile. We implement our algorithm and observe real-world databases that admit a large number of equivalent databases, which aligns with our theoretical results. 
    more » « less